Standard Deviation:

Without frequency

If variable X takes values $x_{1}, x_{2}, x_{3} \ldots \ldots \ldots x_{n}$ with frequencies then
Variance $\quad \sigma_{x}^{2}=\frac{\sum(x-\bar{x})^{2}}{n}$
Standard Deviation $\quad \sigma_{x}=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n}}$
With frequency
If variable X takes values $x_{1}, x_{2}, x_{3} \ldots \ldots x_{n}$ with frequencies f_{1} , $f_{2}, f_{3} \ldots \ldots \ldots f_{n}$ then

Variance $\quad \sigma_{x}^{2}=\frac{\Sigma f(x-\bar{x})^{2}}{\Sigma f}$
Standard Deviation $\quad \sigma_{x}=\sqrt{\frac{\sum f(x-\bar{x})^{2}}{\sum f}}$

Computational Formulae

Without Frequency
Standard Deviation $\quad \sigma_{x}=\sqrt{\frac{\sum x^{2}}{n}-(\bar{x})^{2}}=\sqrt{\frac{\sum x^{2}}{n}-\left(\frac{\sum x}{n}\right)^{2}}$

With Frequency

Standard Deviation $\quad \sigma_{x}=\sqrt{\frac{\Sigma f x^{2}}{\sum f}-(\bar{x})^{2}}=\sqrt{\frac{\sum f x^{2}}{\Sigma f}-\left(\frac{\sum f x}{\Sigma f}\right)^{2}}$

Coefficient of Variation $=$ C.V. $=\frac{\sigma_{x}}{\bar{x}} \times 100$

Q1. Calculate Standard Deviation for the following data

	X	X^{2}
	8	64
	9	81
	15	225
	23	529
	5	25
	11	121
	19	361
	8	64
	10	100
	12	144
Total	120	1714

$$
\sigma_{x}=\sqrt{\frac{\sum x^{2}}{n}-(\bar{x})^{2}} \quad \bar{X}=\frac{\sum x}{n}=\frac{120}{10}=12
$$

$$
\begin{gathered}
=\sqrt{\frac{1714}{10}-(12)^{2}} \\
=\sqrt{171.4-144} \\
=\sqrt{27.4}=5.23
\end{gathered}
$$

Q2. Calculate Standard Deviation and coefficient of variation for the following data

No.of Decayed Teeth	No. of Children	fx	fx^{2}
O	8	O	O
1	4	4	4
2	2	4	8
3	2	6	18
4	1	4	16
5	1	5	25
6	O	O	O
7	0	0	O
8	O	0	O
9	1	9	81
10	1	10	100
	20		252
$\sigma_{x}=\sqrt{\frac{\sum f x^{2}}{\sum f}-(\bar{x})^{2}} \quad \bar{X}=\frac{\sum f x}{n}=\frac{42}{20}=2.1$			
$=\sqrt{\frac{252}{20}-(2.1)^{2}}$			
$=\sqrt{12.6-(2.1)^{2}}$			

Coefficient of Variation $=$ C.V. $=\frac{\sigma_{x}}{\bar{x}} \times 100$

$$
\begin{aligned}
& =\frac{2.86}{2.1} \times 100 \\
& =136.19 \%
\end{aligned}
$$

Q3. Calculate Standard Deviation and coefficient of variation for the following data

x	f	fx	fx^{2}
20	5	100	2000
30	8	240	7200
40	12	480	19200
50	9	450	22500
60	7	420	25200
70	5	350	24500
80	2	160	12800
90	2	180	16200
	50	2380	129600

$$
\begin{aligned}
& \sigma_{x}=\sqrt{\frac{\sum f x^{2}}{\Sigma f}-(\bar{x})^{2}} \quad \bar{X}=\frac{\sum f x}{n}=\frac{2380}{50}=47.6 \\
& =\sqrt{\frac{129600}{50}-(47.6)^{2}} \\
& =\sqrt{2592-(47.6)^{2}} \\
& =\sqrt{326.24}=18.062
\end{aligned}
$$

Coefficient of Variation $=$ C.V. $=\frac{\sigma_{x}}{\bar{x}} \times 100$

$$
\begin{aligned}
& =\frac{18.062}{47.6} \times 100 \\
& =37.94 \%
\end{aligned}
$$

Q4. Calculate Standard Deviation and coefficient of variation for the following data

Age in years	No.of persons	x	fx	fx^{2}
$0-10$	1	5	5	25
$10-20$	2	15	30	450
$20-30$	3	25	75	1875
$30-40$	2	35	70	2450
$40-50$	2	45	90	4050
Total	10		270	8850

$\sigma_{x}=\sqrt{\frac{\sum f x^{2}}{\sum f}-(\bar{x})^{2}} \quad \bar{X}=\frac{\sum f x}{n}=\frac{270}{10}=27$
$=\sqrt{\frac{8850}{10}-(27)^{2}}$
$=\sqrt{885-(27)^{2}}$
$=\sqrt{156}=12.48$

Coefficient of Variation $=$ C.V. $=\frac{\sigma_{x}}{\bar{x}} \times 100$

$$
\begin{aligned}
& =\frac{12.48}{27} \times 100 \\
& =46.22 \%
\end{aligned}
$$

Q5. Calculate Standard Deviation and coefficient of variation for the following data

Marks	No. of students	x	fx	fx^{2}
$\mathrm{o}-5$	2	2.5	5	12.5
$5-10$	5	7.5	37.5	281.5
$10-15$	7	12.5	87.5	1093.75
$15-20$	13	17.5	227.5	3981.25
$20-25$	21	22.5	472.5	10631.25
$25-30$	16	27.5	440	12100
$30-35$	8	32.5	260	8450
$35-40$	3	37.5	112.5	4218.75
Total			1642.5	40768.75

$$
\sigma_{x}=\sqrt{\frac{\sum f x^{2}}{\Sigma f}-(\bar{x})^{2}} \quad \bar{X}=\frac{\sum f x}{\sum f}=\frac{1642.50}{75}=21.9
$$

$$
=\sqrt{\frac{40768.75}{75}-(21.9)^{2}}
$$

$$
=\sqrt{543.58-479.61}
$$

$=\sqrt{63.97}=7.99$

Coefficient of Variation $=$ C.V. $=\frac{\sigma_{x}}{\bar{x}} \mathrm{x} 100$

$$
\begin{aligned}
& =\frac{7.99}{21.9} \times 100 \\
& =36.48 \%
\end{aligned}
$$

Q6. The Scores of 2 batsmen in an over is recorded as follows. Find which one has consistent scores.

Balls	Scores of Batsman A	Scores of Batsman B		
	X	Y	X^{2}	Y^{2}
1	4	3	16	9
2	6	4	36	16
3	6	2	36	4
4	1	3	1	9
5	o	4	o	16
6	6	2	36	4
Total	23	18	125	58

$$
\begin{aligned}
\sigma_{x}= & \sqrt{\frac{\sum x^{2}}{n}-(\bar{x})^{2}} \quad \bar{X}=\frac{\sum x}{n}=\frac{23}{6}=3.83 \\
& =\sqrt{\frac{125}{6}-(3.83)^{2}} \\
& =\sqrt{20.83-14.67} \\
& =\sqrt{6.16}=2.48
\end{aligned}
$$

Coefficient of Variation $=$ C.V. $=\frac{\sigma_{x}}{\bar{x}} \times 100$

$$
\begin{aligned}
& =\frac{2.48}{3.83} \times 100 \\
& =64.75 \%
\end{aligned}
$$

$$
\begin{aligned}
\sigma_{Y}= & \sqrt{\frac{\Sigma^{2}}{n}-(\bar{Y})^{2}} \\
& =\sqrt{\frac{58}{6}-(3)^{2}} \\
& =\sqrt{9.66-9} \\
& =\sqrt{0.66}=0.81
\end{aligned}
$$

$$
\bar{Y}=\frac{\Sigma y}{n}=\frac{18}{6}=3
$$

$$
\begin{aligned}
\text { Coefficient of Variation } & =\text { C.V. }=\frac{\sigma_{x}}{\bar{Y}} \times 100 \\
& =\frac{0.81}{3} \times 100 \\
& =27.0 \%
\end{aligned}
$$

As Coefficient of Variation for Batsman B is less, Variable Y, Score of Batsman B is more consistent.

Q7. The Sales of 2 stores for a week is recorded as follows. Find which of these stores has consistent sales.

Weekday	Sales in Sore I	Sales in Sore II		
	X	Y	X^{2}	Y^{2}
1	50	90	2500	8100
2	30	80	900	6400
3	40	40	1600	1600
4	60	10	3600	100
5	20	10	400	100
6	50	20	2500	400
Total	250	250	11500	16700

$$
\begin{aligned}
\sigma_{x}= & \sqrt{\frac{\sum x^{2}}{n}-(\bar{x})^{2}} \quad \bar{X}=\frac{\sum x}{n}=\frac{250}{6}=41.66 \\
& =\sqrt{\frac{11500}{6}-(41.66)^{2}} \\
& =\sqrt{1916.66-1735.55} \\
& =\sqrt{181.11}=13.46
\end{aligned}
$$

Coefficient of Variation $=$ C.V. $=\frac{\sigma_{x}}{\bar{x}} \times 100$

$$
\begin{aligned}
& =\frac{13.46}{41.66} \times 100 \\
& =32.31 \%
\end{aligned}
$$

$$
\begin{aligned}
\sigma_{Y}= & \sqrt{\frac{\sum^{Y^{2}}}{n}-(\bar{Y})^{2}} \quad \bar{Y}=\frac{\Sigma y}{n}=\frac{250}{6}=41.66 \\
& =\sqrt{\frac{16700}{6}-(41.66)^{2}} \\
& =\sqrt{2783.33-1735.55} \\
& =\sqrt{1047.78}=32.37
\end{aligned}
$$

Coefficient of Variation $=$ C.V. $=\frac{\sigma_{x}}{\bar{Y}} \times 100$

$$
\begin{aligned}
& =\frac{32.37}{41.66} \times 100 \\
& =77.7 \%
\end{aligned}
$$

As Coefficient of Variation for X is less, Variable X, Sales in Sore I are more consistent.

Standard Deviation for the Combined Group
If we have two groups of n_{1} and n_{2} observations, with means $\overline{x_{1}}$ and $\overline{x_{2}}$ and standard deviations σ_{1} and σ_{2} respectively, then we know that the combined mean is given by

$$
\bar{x}=\frac{n_{1} \bar{x}_{1}+n_{2} \bar{x}_{2}}{n_{1}+n_{2}}
$$

Let $\mathrm{d} 1=\bar{x}-\overline{x_{1}}$ and $\mathrm{d} 2=\bar{x}-\overline{x_{2}}$
$\sigma=\sqrt{\frac{n_{1\left(\sigma_{1}^{2}+d_{1}^{2}\right)+n_{2}\left(\sigma_{1}^{2}+d_{2}^{2}\right)}^{n_{1}+n_{2}}}{}}$
Q1. The following information about two factories is given below.

> Factory A Factory B

Number

$$
50
$$

100
Means
120
85

Variance
9
16
i. Which factory has larger wage bill ?
ii. Which factory has greater variation ?
iii. Calculate the S.D. of wages of employees of both the factories taken together
i. Wage Bill

Wage Bill = Mean Wages * No. of employees
Factory A = 120 * $50=6000$
Factory B = 85 * $100=8500$
Factory B has larger Wage Bill
ii. Variation
C.V. $=\frac{\text { S.D }}{\text { Mean }} \times 100$

Factory A C.V. $=\frac{3}{120} \times 100=2.5 \%$
Factory B C.V. $=\frac{4}{85} \times 100=4.7 \%$
Factory B has greater variation
iii. Combined S.D.

$$
\begin{aligned}
\bar{x} & =\frac{n_{1} \bar{x}_{1}+n_{2} \bar{x}_{2}}{n_{1}+n_{2}} \\
& =\frac{50 * 120+100 * 85_{2}}{50+100} \\
& =\frac{6000+8500}{50+100}=\frac{14500}{150}=96.66 \\
\mathrm{~d} 1= & \bar{x}-\overline{x_{1}}=-23.33 \text { and } \mathrm{d} 2=\bar{x}-\overline{x_{2}}=11.67 \\
\sigma & =\sqrt{\frac{n_{1}\left(\sigma_{1}^{2}+d_{1}^{2}\right)+n_{2}\left(\sigma_{1}^{2}+d_{2}^{2}\right)}{n_{1}+n_{2}}} \\
& =\sqrt{\frac{50\left(9+23.33^{2}\right)+100\left(16+11.67^{2}\right)}{50+100}} \\
& =\sqrt{\frac{50(553.29)+100(152.19)}{50+100}} \\
& =\sqrt{\frac{27664.5+15219}{50+100}} \\
& \sqrt{\frac{42883.5}{150}=\sqrt{285.89}=16.9}
\end{aligned}
$$

Q2. The mean and S.D. of group of 100 items are 80 and 5 respectively. In $2^{\text {nd }}$ group consisting of 25 observations, where each value is 60 , Calculate mean and S.D. of 2 groups taken together .

Group A Group B
Number $100 \quad 25$
Means
80
60
Variance
5
o
Combined Mean

$$
\begin{aligned}
\bar{x} & =\frac{n_{1} \bar{x}_{1}+n_{2} \bar{x}_{2}}{n_{1}+n_{2}} \\
& =\frac{100 * 80+25 * 60}{100+25} \\
& =\frac{8000+1500}{100+25}=\frac{9500}{125}=76
\end{aligned}
$$

Combined S.D
$\mathrm{d} 1=\bar{x}-\overline{x_{1}}=-4$ and $\mathrm{d} 2=\bar{x}-\overline{x_{2}}=16$
$\sigma=\sqrt{\frac{n_{1\left(\sigma_{1}^{2}+d_{1}^{2}\right)+n_{2}\left(\sigma_{1}^{2}+d_{2}^{2}\right)}^{n_{1}+n_{2}}}{}}$
$=\sqrt{\frac{100(25+16)+25(0+256)}{125}}$

$$
=\sqrt{\frac{4100+6400}{125}}=\sqrt{84}=9.17
$$

Q3. From the group containing 100 observations with mean 8 and S.D. $\sqrt{10.5}, 50$ observations were selected. Mean and S.D. of these 50 observations were recorded as 10 \& 2 respectively. Calculate mean and S.D. of remaining 50 observations .

Combined Mean

$$
\begin{gathered}
\bar{x}=\frac{n_{1} \bar{x}_{1}+n_{2} \bar{x}_{2}}{n_{1}+n_{2}} \\
8=\frac{50 * 10+50 * \overline{x_{2}}}{100} \\
800=500+50 * \overline{x_{2}} \\
\overline{x_{2}}=\frac{300}{50}=6
\end{gathered}
$$

Combined S.D

$$
\mathrm{d}_{1}=\bar{x}-\overline{x_{1}}=8-10=-2 \text { and } \mathrm{d} 2=\bar{x}-\overline{x_{2}}=8-6=2
$$

$$
\begin{gathered}
\sigma=\sqrt{\frac{n_{1}\left(\sigma_{1}^{2}+d_{1}^{2}\right)+n_{2}\left(\sigma_{1}^{2}+d_{2}^{2}\right)}{n_{1}+n_{2}}} \\
\sqrt{10.5}=\sqrt{\frac{50(4+4)+50\left(\sigma_{2}^{2}+4\right)}{100}}
\end{gathered}
$$

Squaring both sides

$$
\begin{aligned}
& 10.5 * 100=50 * 8+50 * \sigma_{2}^{2}+50 * 4 \\
& 1050=400+50 * \sigma_{2}^{2}+200 \\
& 50 * \sigma_{2}^{2}=1050-400-200
\end{aligned}
$$

$$
\begin{aligned}
& 50 * \sigma_{2}^{2}=450 \\
& \sigma_{2}^{2}=9 \\
& \sigma_{2}=3
\end{aligned}
$$

Q4. There are two groups containing 400 \& 500 observations respectively. Mean and variance of the first group are $50 \& 25$ respectively and Mean for the second group is 41 . Calculate S.D. of the second group , given the combined variance is 37 .

Combined Mean

$$
\begin{aligned}
\bar{x} & =\frac{n_{1} \bar{x}_{1}+n_{2} \bar{x}_{2}}{n_{1}+n_{2}} \\
& =\frac{400 * 50+500 * 41}{900} \\
& =\frac{20000+20500}{900}=\frac{40500}{900}=45
\end{aligned}
$$

Combined S.D

$$
\begin{aligned}
& \mathrm{d} 1=\bar{x}-\overline{x_{1}}=45-50=-5 \text { and } \mathrm{d} 2=\bar{x}-\overline{x_{2}}=45-41=4 \\
& \sigma=\sqrt{\frac{n_{1}\left(\sigma_{1}^{2}+d_{1}^{2}\right)+n_{2}\left(\sigma_{1}^{2}+d_{2}^{2}\right)}{n_{1}+n_{2}}} \\
& \\
& 37=\frac{400 * 50+500 * \sigma_{2}^{2}+500 * 16}{400+500} \\
& \\
& 37 * 900=20000+500 * \sigma_{2}^{2}+8000 \\
& 333000=28000+500 * \sigma_{2}^{2} \\
& 500 * \sigma_{2}^{2}=5300
\end{aligned}
$$

$$
\begin{aligned}
& \sigma_{2}^{2}=\frac{5300}{500}=10.6 \\
& \sigma_{2}=3.25
\end{aligned}
$$

